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Abstract. We prove that any accumulation point of an elastic mode approach, applied to the
optimization of a mixed P variational inequality, that approximately solves the relaxed subproblems
is a C-stationary point of the problem of optimizing a parametric mixed P variational inequality.
If, in addition, the accumulation point satisfies the MPCC-LICQ constraint qualification and if
the solutions of the subproblem satisfy approximate second-order sufficient conditions, then the
limiting point is an M-stationary point. Moreover, if the accumulation point satisfies the upper-level
strict complementarity condition, the accumulation point will be a strongly stationary point. If
we assume that the penalty function associated with the feasible set of the mathematical program
with complementarity constraints has bounded level sets and if the objective function is bounded
below, we show that the algorithm will produce bounded iterates and will therefore have at least one
accumulation point. We prove that the obstacle problem satisfies our assumptions for both a rigid
and a deformable obstacle. The theoretical conclusions are validated by several numerical examples.
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1. Introduction. Complementarity constraints are used to model numerous
economics or engineering applications [18, 22]. Solving optimization problems with
complementarity constraints may prove difficult for classical nonlinear optimization,
however, given that, at a solution x∗, such problems cannot satisfy a constraint qual-
ification [18]. Nevertheless, recently there has been substantial interest in solving
mathematical programs with complementarity constraints (MPCCs) by using classi-
cal nonlinear programming techniques. It has been shown that an SQP elastic mode
approach can be expected to locally solve the generic case of MPCC [1]. Several
positive results in the same direction have been proved for FilterSQP [10]. These
results have been validated by an extensive numerical investigation of SNOPT and of
FilterSQP [9]. SNOPT is an algorithm that implements a version of the elastic mode
considered here [15]. That success has also been empirically extended to interior point
approaches coupled with a relaxation strategy much like the elastic mode approach
[2].

Classical nonlinear programming techniques are not the only ones developed for
solving MPCC. Other types of techniques have been developed, most notably bun-
dle nonsmooth trust region methods for implicit programming [22] and disjunctive
programming [18]. We believe that further investigation in the behavior of classical
nonlinear programming techniques is warranted, however, given the success of such
techniques in solving large-scale problems, as well as the level of maturity of their
software implementations.

Most of the convergence results presented so far in the literature are of a local
nature [1, 24, 9]. In this work, we investigate the global convergence of an elastic-
mode approach for a special class of MPCCs: optimization of parametric variational
inequalities that satisfy the mixed P property [18, Definition 6.1.4]. To accommodate
the fact that the penalty parameter may need to be driven to infinity and to avoid the
possibility that an insufficiently penalized relaxation will require an infinite number
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of steps to solve, we consider the possibility where, for a given penalty parameter, a
subproblem is solved only inexactly.

Some of our techniques are related to the ones in [18, Section 6.1]. That reference
was the original inspiration for the class of problems considered here. A major diffi-
culty with that work is that unless lower level strict complementarity is satisfied at
the point towards which the algorithm defined in [18, Section 6.1] converges, nothing
can be said about the quality of that point [18, Page 312]. In this work we refined the
range of outcomes that was provided in [18]. We show that under assumptions similar
to the ones in [18, Section 6], the outcome of an elastic mode approach can be con-
nected to weaker, though broadly employed in the literature [23, 24, 16], stationarity
concepts, without requiring lower-level strict complementarity.

We note that global convergence to a B-stationary point was proved for an active
set method that assumes that the MPCC linear independence constraint qualification
(MPCC-LICQ) holds everywhere [14]. The assumptions of this work neither imply
nor are implied from the assumptions of [14]. In particular, we do not assume uni-
form MPCC-LICQ, but we do assume that the problem has a structure that is more
restrictive than the one in [14].

2. Accumulation Points Are C-Stationary Points. In this section, we dis-
cuss the mixed P property, we state our model problem and we present and prove our
global convergence result.

2.1. The Mixed P Property. The key notion used in this section is the mixed
P partition [18, Definition 6.1.4].

Definition (mixed P partition). Let A ∈ R
(nc+l)×nc , B ∈ R

(nc+l)×nc , and
C ∈ R

(nc+l)×l. We say that the partition [A B C] is mixed P partition if

0 6= (y, w, z) ∈ R
2nc+l, Ay +Bw + Cz = 0 ⇒ ∃i, 1 6 i 6 nc, such that yiwi > 0.

(2.1)
Lemma 2.1. Assume [A B C] is a mixed P partition. Let D ∈ R

nc×nc be a
diagonal matrix such that all its diagonal entries satisfy di 6= 0, i = 1, 2, . . . , nc. Then
[AD BD C] is also a mixed P partition.

Proof Let 0 6= (y, w, z) ∈ R
2nc+l such that ADy+BDw+Cz = 0. Let ỹ = Dy

and w̃ = Dw. We then have that 0 6= (ỹ, w̃, z) and Aỹ + Bw̃ + Cz = 0. From (2.1)
we obtain that ∃i, 1 6 i 6 nc, such that 0 < ỹi w̃i = d2

i yiwi, which in turns implies
that yiwi > 0. The proof is complete. �

Theorem 2.2. Assume that [A B C] is a mixed P partition. The system of
linear constraints

AT θ 6 0, BT θ 6 0, CT θ = 0

has the unique feasible point θ = 0.
Proof Let 0 6= y ∈ Rnc . An immediate consequence of the fact that [A B C]

is a mixed P partition is that the matrix [B C] is invertible [18]. We define w ∈ R
nc

and z ∈ R
l by

w = −[Inc
0][B C]−1Ay

z = −[0 Il][B C]−1Ay.

Here we denote by Ik the k×k identity block. One can immediately see that (y, w, z)
satisfies Ay + Bw + Cz = 0. Using that [A B C] is a mixed P partition, we obtain
that ∃i, 1 6 i 6 nc, such that yiwi > 0. Let Q = −[Inc

0][B C]−1A. Since w = Qy,
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this means that ∀y 6= 0, ∃i, 1 6 i 6 nc, such that yi (Qy)i > 0, and thus Q is a P
matrix [6]. Therefore, QT is also a P matrix [6], where

QT = −AT

[
BT

CT

]−1 [
Inc

0

]
.

Let now θ be a feasible point of the linear constraints in the statement of the theorem.
There exist η1, η2 ∈ R

nc , η1 > 0, η2 > 0, such that

AT θ + η1 = 0, BT θ + η2 = 0, CT θ = 0.

We solve for θ from the last two equations to obtain that

θ = −

[
BT

CT

]−1 [
Inc

0

]
η2. (2.2)

Substituting in the remaining equation, we get that

0 = η1 −AT

[
BT

CT

]−1 [
Inc

0

]
η2,

which, using our definition for Q and QT , can be rewritten as

−η1 = QT η2.

From the definition of a P matrix, it follows that, if η2 6= 0, there exists i, where
1 6 i 6 nc, such that −η1,iη2,i > 0, or η1,iη2,i < 0. This would contradict the fact
that η1 > 0 and η2 > 0. The only alternative remains η1 = η2 = 0. From (2.2) this
results in θ = 0, which proves our claim. �

2.2. Optimization of Parameterized Mixed P Variational Inequalities.
We now define the following mathematical program with complementarity constraints
that we study in this work together with its relaxed version.

(OMPV)
min

x,y,w,z
f(x, y, w, z)

sbj.to g(x) 6 0 (µ)
h(x) = 0 (λ)
F (x, y, w, z) = 0 (θ)
y, w 6 0(ηy,w)
yTw 6 0 (αc)

(OMPV(c))
min

x,y,w,z,ζ1,ζ2

f(x, y, w, z)+ c(ζ1 + ζ2)

sbj.to g(x) 6 0 (µ)
h(x) = 0 (λ)

−ζ1enc+l 6 F (x, y, w, z) 6 ζ1enc+l(θ
−,+)

y, w 6 0 (ηy,w)
yTw 6 ζ2 (αc)
ζ1, ζ2 > 0 (α1,2)

Here we have shown in parentheses the symbols we will use for the Lagrange multi-
pliers. We have denoted here by enc+l a vector of all ones, of dimension nc + l.

The last constraint, which together with the bound constraints y, w 6 0 form the
complementarity constraints of (OMPV), can be formulated as either an equality or
an inequality constraint without altering the feasible set [10]. This constraint makes
the problem a member of the class of MPCCs. Many of the issues and properties we
will discuss in this work are relevant to MPCCs and we will use the MPCC acronym
to identify them. We note that there exists a more general class of related problems,
mathematical programs with equilibrium constraints (MPEC) [18]. However, when
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the convex set over which the equilibrium constraints are defined can be represented
by a finite number of inequalities, which is the case in most applications, an MPEC
problem can be reduced to an MPCC.

Here x ∈ R
n, y, w ∈ R

nc , z ∈ R
l, f : R

n+2nc+l → R, h : R
n → R

ne , g : R
n → R

ni ,
F : R

n+2nc+l → R
nc+l. In (OMPV(c)) we relax the complementarity constraints

yTw 6 0 as well as the nonlinear equation F (x, y, w, z) = 0. A large variety of other
relaxations, connected to various nondifferentiable exact penalty functions, lead to
similar results. For example, all nonlinear constraints can be relaxed [1]. We do not
further pursue that avenue.

2.2.1. Stationary Points of (OMPV). The difficult nature of mathematical
programs with complementarity constraints has led to the definition of stationary
points of (OMPV) different from the ones that correspond to the nonlinear program-
ming interpretation of (OMPV). Formally, we consider multipliers of (OMPV) that
satisfy αc = 0, though we relax the requirement that ηy, ηw > 0, and we denote the
new multipliers by η̂y, η̂w. We call such multipliers (λ, µ, θ, η̂y, η̂w) MPCC multipliers.
The corresponding stationary points (x, y, z, w), together with the MPCC multipliers
satisfy the following relations:

∇xf(x, y, w, z)T + ∇xh(x)
Tλ+

∇xg(x)
Tµ+ ∇xF (x, y, w, z)T θ = 0

∇yf(x, y, w, z)T + η̂y + ∇yF (x, y, w, z)T θ = 0
∇wf(x, y, w, z)T + η̂w + ∇wF (x, y, w, z)T θ = 0
∇zf(x, y, w, z)T + ∇zF (x, y, w, z)T θ = 0
g(x) 6 0, µ > 0, h(x) = 0, g(x)Tµ = 0
F (x, y, z, w) = 0, y 6 0, w 6 0, yTw = 0,∑nc

k=1 yk|η̂y,k| = 0,
∑nc

k=1 wk|η̂w,k| = 0

. (2.3)

We distinguish the following types of stationarity [23, 16].
• Weakly stationary points where no sign requirements are made on η̂y, η̂w

• C-stationary points, where we require that η̂y,kη̂w,k > 0, k = 1, 2, . . . , nc

• M-stationary points, that are C-stationary points with the additional require-
ment that either η̂y,k > 0 or η̂w,k > 0, k = 1, 2, . . . , nc

• B-stationary points, for which d = 0 is a solution of the problem obtained by
linearizing all the data of (OMPV) with the exception of the complementarity
constraint yTw 6 0

• Strongly stationary points, which satisfy

yk = 0, wk = 0 ⇒ η̂y,k > 0 and η̂w,k > 0, k = 1, 2, . . . , nc

It is immediate that such points are also KKT points in the nonlinear pro-
gramming sense of (OMPV) [23].

If a point is a strongly stationary point, then it is also a stationary point of any
other type [23]. Also, a stationary point of any type is a weakly stationary point [23].
In addition, an M-stationary point is also a C-stationary point. No other relation
holds in general between these stationarity concepts. For an approach that uses
the linearization of the data, B-stationary points seem to be the desirable outcome.
However, the amount of work necessary to recognize B-stationary points may be
exponential in the dimension of the problem [22].

Definition (ULSC)[13, 24]. A weakly stationary point (x, y, z, w) of (OMPV)
satisfies the upper level strict complementarity (ULSC) property if there exists an
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MPCC multiplier that satisfies

yk + wk = 0 ⇒ η̂y,kη̂w,k 6= 0, k = 1, 2, . . . , nc.

2.2.2. Parametric Mixed P Variational Inequalities. For fixed x, the sys-
tem of generalized equations

F (x, y, w, z) = 0, y 6 0, w 6 0, wT y = 0 (2.4)

defines a mixed nonlinear complementarity problem, that is an instance of a varia-
tional inequality. We can therefore interpret y, w, z as the state variables and x as the
parameters of the parameterized variational inequality (2.4).

For the remainder of this work we make the following assumptions:
A1 The mappings f, g, h, F are twice continuously differentiable.
A2 The constraints involving only the parameters x satisfy, for any x,

i) ∇xh(x) has full column rank.
ii) ∃p ∈ R

n such that ∇xh(x)p = 0 and ∇gi(x)p < 0 whenever gi(x) > 0.
iii) The linearization h(x) + ∇xh(x)d = 0, g(x) + ∇xg(x)d 6 0 is feasible.

A3 The partition [∇yF,∇wF,∇zF ] is a mixed P partition (2.1).
Note that A2i and A2ii do not imply A2iii, since we allow for the point x to be
infeasible for the constraints g(x) 6 0, h(x) = 0. The Assumption A2 holds when
g 6 0, h = 0 represent a polyhedral set in a minimal representation.

We call the problem (OMPV), that contains (2.4) as a constraint, under the
assumptions A1–A3 optimization of parameterized mixed P variational inequalities.
Note that (OMPV) under the assumptions A1–A3 was also studied in [18] but with
a different algorithmic approach and outcome.

Theorem 2.3. The nonlinear program (OMPV(c)) has a feasible linearization
and satisfies the Mangasarian-Fromovitz constraint qualification (MFCQ) [4, Page
441] [19] at any point (x, y, w, z, ζ1, ζ2).

Proof. Consider the constraints g(x) 6 0, h(x) = 0, y 6 0, w 6 0 . Using
Assumption A2, we obtain that there exist dx, dy, dw such that

g(x) + ∇xg(x)dx < 0
h(x) + ∇xh(x)dx = 0
y + dy < 0
w + dw < 0.

Choose also dw = 0nc
, dy = 0nc

, dz = 0l, and consider the linearization of the feasible
set of the program (OMPV(c)) at the point (x, y, w, z, ζ1, ζ2):

g(x) + ∇xg(x)dx 6 0
h(x) + ∇xh(x)dx = 0

−ζ1enc+l − dζ1
enc+l 6 F (x, y, w, z)+

∇(x,y,w,z)F (x, y, w, z) (dx, dy, dw, dz)
T

6 ζ1enc+l + dζ1
enc+l

y + dy, w + dw 6 0
yTw + wT dy + yT dw 6 ζ2 + dζ2

ζ1 + dζ1
> 0

ζ2 + dζ2
> 0.

If we choose dζ1
, dζ2

sufficiently large, then we obtain a d = (dx, dy, dw, dz, dζ1
, dζ2

)
such that the inequalities in the above system are strictly satisfied, which shows that
(OMPV(c)) satisfies has a feasible linearization and satisfies MFCQ everywhere. �
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In the following, we introduce the notion of ε stationary point. A variant of it
has been used before for Lagrange multiplier algorithms [3, Proposition 4.2.2]. This
will help define an algorithm that needs to spend only a finite number of steps to
approximately solve (OMPV(c)), before having to increase the penalty parameter.
This property is unlike the regularization approach in [24], where the relaxed problem
must be solved exactly.

Definition (ε stationary point). We say that (x, y, w, z, ζ1, ζ2) is an ε sta-
tionary point of (OMPV(c)) if there exists (λ, µ, θ, ηy, ηw, αc, α1, α2) such that the
following conditions are satisfied:

Dual





∇xf(x, y, w, z)T + ∇xh(x)
Tλ+

∇xg(x)
Tµ+ ∇xF (x, y, w, z)T (θ+ − θ−) = tx

∇yf(x, y, w, z)T + ηy + αcw + ∇yF (x, y, w, z)T (θ+ − θ−) = ty
∇wf(x, y, w, z)T + ηw + αcy + ∇wF (x, y, w, z)T (θ+ − θ−) = tw

∇zf(x, y, w, z)T + ∇zF (x, y, w, z)T (θ+ − θ−) = tz
‖θ+‖1 + ‖θ−‖1 + α1 = c+ tα1; αc + α2 = c+ tα2

µ > 0; ηy, ηw > 0; θ+, θ− > 0; αc, α1, α2 > 0,

Primal





g(x) 6 tg
h(x) = th

−ζ1enc+l − t1F 6 F (x, y, w, z) 6 ζ1enc+l + t2F

y, w 6 0
yTw 6 ζ2 + tc
ζ1, ζ2 > 0,

Compl.





(ζ1enc+l − F )T θ+ + (F + ζ1enc+l)
T θ− = tcF

αc(ζ2 − wT y) = tcc; g(x)
Tµ = tcg;

|α2ζ2| 6 tcp; |α1ζ1| 6 tcp;
∣∣yT ηy

∣∣ 6 tcp;
∣∣wT ηw

∣∣ 6 tcp,

where the size of the inexactness is bounded above by ε, that is,

‖tg, th, t1F , t2F , tc, tx, ty, tw, tz, tα1,tα2, tcc, tcF , tcg, tcp‖∞ 6 ε.

When defining our approximate stationary point, we assumed that bound constraints
that involve a zero bound and the sign condition for the resulting multiplier can be
exactly enforced. For interior point methods this assumption is readily satisfied (even
in finite-precision arithmetic).

Definition (Global Convergence Safeguard). We say that a nonlinear pro-
gramming algorithm has a global convergence safeguard if any accumulation point of
the algorithm is one of the following

1. An infeasible point of the nonlinear program at which the linearization of the
constraints is infeasible.

2. A feasible point of the nonlinear program that does not satisfy MFCQ.
3. A feasible point of the nonlinear program that satisfies MFCQ and that is a

KKT point of the nonlinear program.
An example of such an algorithm is FilterSQP [11]. We use the following assumption.

Alg1 The nonlinear programming algorithm has a global convergence safeguard.

Lemma 2.4. Any accumulation point of a nonlinear programming algorithm that
satisfies Assumption Alg1 and is applied to (OMPV(c)) is a KKT point.

Proof Since the nonlinear programming algorithm has a global convergence safe-
guard, it cannot end in case 1 or case 2, following Theorem 2.3. The conclusion
follows, and the proof is complete. �
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Based on this Lemma, we will assume in the rest of this work that we have access
to an algorithm that satisfies the Assumption Alg1 and that can provide, for any
ε > 0, an ε stationary point of (OMPV(c)). We can now state the following theorem,
that will be our main convergence tool.

Theorem 2.5. Assume that (OMPV) satisfies assumptions A1,A2 and A3

and that the relaxed problems (OMPV(c)) are solved with an algorithm that satis-
fies the Assumption Alg1. Let (xn, yn, wn, zn, ζn

1 , ζ
n
2 ) be an εn stationary point of

(OMPV(cn)). Assume that limn→∞ cn = ∞, limn→∞ εn = 0, and limn→∞ cnεn = 0.
Then any accumulation point (x∗, y∗, w∗, z∗, ζ∗1 , ζ

∗

2 ) of (xn, yn, wn, zn, ζn
1 , ζ

n
2 ) must

satisfy ζ∗1 = 0, ζ∗2 = 0, and (x∗, y∗, w∗, z∗) is a feasible C-stationary point of (OMPV).

Proof: Feasibility. From our assumption, (xn, yn, wn, zn, ζn
1 , ζ

n
2 ) is a εn sta-

tionary point of (OMPV(cn)), which, by Theorem 2.3, satisfies MFCQ everywhere.
There must exist the Lagrange multipliers λn ∈ R

ne , µn ∈ R
ni

+ , θ+n, θ−n ∈ R
nc+l
+ ,

ηn
y ∈ R

nc

+ , ηn
w ∈ R

nc

+ , αn
1 , α

n
2 , α

n
c ∈ R+ that, together with (xn, yn, wn, zn, ζn

1 , ζ
n
2 ),

satisfy the εn approximate KKT conditions, which include the following equations

∇xf(xn, yn, wn, zn)T + ∇xh(x
n)Tλn+

∇xg(x
n)Tµn + ∇xF (xn, yn, wn, zn)T (θ+n − θ−n) = tnx

∇yf(xn, yn, wn, zn)T + αn
cw

n + ηn
y + ∇yF (xn, yn, wn, zn)T (θ+n − θ−n) = tny

∇wf(xn, yn, wn, zn)T + αn
c y

n + ηn
w + ∇wF (xn, yn, wn, zn)T (θ+n − θ−n) = tnw

∇zf(xn, yn, wn, zn)T + ∇zF (xn, yn, wn, zn)T (θ+n − θ−n) = tnz
(ζn

1 enc+l − F (xn, yn, wn, zn))T θ+n + (F (xn, yn, wn, zn) + ζn
1 enc+l)

T θ−n = tcF

αn
1 + ||θ+n||1 + ||θ−n||1 = cn + tnα1

; g(xn) 6 tng , yn 6 0, wn 6 0
αn

c (wnT yn − ζn
2 ) = tncc, αn

2 + αn
c = cn + tnα2

; (wnT yn − ζn
2 ) 6 tnc , ζn

2 > 0
g(xn)Tµn = tncg, |αn

1 ζ
n
1 | 6 tcp;

∣∣yT
n η

n
y

∣∣ 6 tncp,
∣∣wnT ηn

w

∣∣ 6 tncp, |αn
2 ζ

n
2 | 6 tncp

(2.5)

∥∥tnx , tny , tnw, tnz , tncc, t
n
cF , t

n
cg, t

n
cy, t

n
cw, t

n
α1
, tnα2

, tncp

∥∥
∞

6 εn

We ignore for the time being the effect of the variable ζ1 over the optimality

conditions. We also denote θn = θ+n − θ−n and λ̃
n

=
(
λn, µn, θn, ηn

y , η
n
w, α

n
c , α

n
2

)
.

Since αn
c + αn

2 = cn + tnα2
, cn → ∞ and εn → 0, we must have that

∣∣∣
∣∣∣λ̃n

∣∣∣
∣∣∣
∞

→ ∞

as n→ ∞. Therefore, the sequence
eλ

n

||eλ
n
||

∞

, admits an accumulation point

λ̃
∗

=
(
λ∗, µ∗, θ∗, η∗y , η

∗

w, α
∗

c , α
∗

2

)

that satisfies
∣∣∣
∣∣∣λ̃

∗
∣∣∣
∣∣∣
∞

= 1 and µ∗ > 0, η∗y > 0, η∗w > 0, α∗

c > 0 and α∗

2 > 0. We can

assume without loss of generality (after eventually restricting the respective sequences
to subsequences) that

λ̃
n

∣∣∣
∣∣∣λ̃

n
∣∣∣
∣∣∣
∞

→ λ̃
∗

and (xn, yn, wn, zn, ζn
2 ) → (x∗, y∗, w∗, z∗, ζ∗2 ).
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We now divide (2.5) by
∣∣∣
∣∣∣λ̃n

∣∣∣
∣∣∣
∞

and take the limit as n→ ∞, to obtain

∇xh(x
∗)Tλ∗ + ∇xg(x

∗)Tµ∗ + ∇xF (x∗, y∗, w∗, z∗)T θ∗ = 0
α∗

cw
∗ + η∗y + ∇yF (x∗, y∗, w∗, z∗)T θ∗ = 0

α∗

cy
∗ + η∗w + ∇wF (x∗, y∗, w∗, z∗)T θ∗ = 0

∇zF (x∗, y∗, w∗, z∗)T θ∗ = 0

g(x∗) 6 0, y∗ 6 0, w∗ 6 0, (w∗
T

y∗ − ζ∗2 ) 6 0, ζ∗2 > 0

g(x∗)Tµ∗ = 0, y∗
T

η∗y = 0, w∗
T

η∗w = 0, α∗

c(w
∗

T

y∗ − ζ∗2 ) = 0, α∗

2ζ
∗ = 0.

(2.6)
Take now an index k such that 1 6 k 6 nc. Since α∗

c > 0, w∗

k 6 0, y∗k 6 0,
η∗w,k > 0, and η∗y,k > 0, we must have that

η∗y,k + α∗

cw
∗

k > 0 ⇒ η∗y,k > 0
(2.6)
⇒ y∗k = 0 ⇒ η∗w,k + α∗

cy
∗

k > 0.

Similarly, we have that

η∗w,k + α∗

cy
∗

k > 0 ⇒ η∗w,k > 0
(2.6)
⇒ w∗

k = 0 ⇒ η∗y,k + α∗

cw
∗

k > 0.

We therefore conclude that, for k = 1, 2, . . . , nc, we must have that

(η∗w,k + α∗

cy
∗

k)(η∗y,k + α∗

cw
∗

k) > 0.

We can therefore define for k = 1, 2, . . . , nc the quantities

dk =





1 if (η∗w,k + α∗

cy
∗

k) > 0 or (η∗y,k + α∗

cw
∗

k) > 0

−1 if (η∗w,k + α∗

cy
∗

k) < 0 or (η∗y,k + α∗

cw
∗

k) < 0

1 if (η∗w,k + α∗

cy
∗

k) = (η∗y,k + α∗

cw
∗

k) = 0
.

From our observation and the definition of dk, k = 1, 2, . . . , nc, we must have that

dk(η∗w,k + α∗

cy
∗

k) > 0 and dk(η∗y,k + α∗

cw
∗

k) > 0, k = 1, 2, . . . , nc.

We denote byD ∈ R
nc×nc the matrix whose diagonal elements are dk, k = 1, 2, . . . , nc.

The middle equations from (2.6) and our definition of D imply that

D∇yF (x∗, y∗, w∗, z∗)T θ∗ 6 0,
D∇wF (x∗, y∗, w∗, z∗)T θ∗ 6 0,
∇zF (x∗, y∗, w∗, z∗)T θ∗ = 0.

From Assumption (A3), Lemma 2.1, and Theorem 2.2, the preceding equation implies
that θ∗ = 0. Replacing this in (2.6), we obtain that

∇xh(x
∗)Tλ∗ +

∑

i∈A(x∗)

∇xgi(x
∗)Tµ∗

i = 0,

which, from Assumption (A2), implies that λ∗ = 0 and µ∗ = 0. The fact that θ∗ = 0
also implies from (2.6) that

η∗y + α∗

cw
∗ = 0, η∗w + α∗

cy
∗ = 0. (2.7)

Multiplying the first relation with y∗
T

and the second one with w∗
T

and using the

complementarity relations y∗
T

η∗y = 0 and w∗
T

η∗w = 0 from (2.6), we obtain that

α∗

cy
∗

T

w∗ = 0. (2.8)

We have the following cases.
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1. α∗

c > 0. Then (2.8) implies that y∗
T

w∗ = 0. From the equation α∗

c(w
∗

T

y∗ −

ζ∗2 ) = 0 of (2.6) we get that ζ∗2 = y∗
T

w∗ = 0.
2. α∗

c = 0. Then from (2.7) we get that η∗y = η∗w = 0. It then follows that the only

nonzero component of λ̃
∗

is α∗

2, which must then satisfy α∗

2 =
∣∣∣
∣∣∣λ̃∗

∣∣∣
∣∣∣
∞

= 1.

The complementarity condition α∗

2ζ
∗

2 = 0 from (2.6) now implies ζ∗2 = 0.

In either case we obtain ζ∗2 = 0 .

Assume now that ζn
1

n→∞
−−−−→ ζ∗1 > 0. Define λ̃

n
= (λn , µn, θ+n, θ−n,ηn

y , η
n
w,

αn
c , α

n
1 , α

n
2 ), that by a similar observation as the one in the previous paragraphs

must satisfy that
∣∣∣
∣∣∣λ̃n

∣∣∣
∣∣∣
∞

→ ∞ as n → ∞. Consider an accumulation point λ̃
∗

=
(
λ∗, µ∗, θ+∗, θ−∗, η∗y , η

∗

w, α
∗

c , α
∗

1, α
∗

2

)
of the sequence

eλ
n

||eλ
n
||

∞

. Using the complemen-

tarity relationships from equation (2.5), we obtain that θ+∗
T

θ−∗ = 0. Indeed, if we
assume that θ+∗

k > 0, for some k = 1, 2, . . . , nc, the complementarity relations from

equation (2.5) in which we take the limit after dividing with
∣∣∣
∣∣∣λ̃n

∣∣∣
∣∣∣
∞

→ ∞, result in

0 < ζ∗1 = Fk(x∗, y∗, w∗, z∗), which in turn implies that θ−∗

k = 0.

Repeating the argument that led us to the conclusion that ζ∗2 = 0, we obtain

that 0 = θ∗ = θ+∗ − θ−∗, which in conjunction with θ+∗
T

θ−∗ = 0, implies that
θ+∗ = θ−∗ = 0 and that (λ∗, µ∗, θ+∗, θ−∗) = 0 as well as η∗y+α∗

cw
∗ = 0, η∗w+α∗

cy
∗ = 0.

The last two equations imply that ηn
y , η

n
w = O(αn

c ). Using the definition of λ̃ we obtain

that
∥∥∥λ̃

n
∥∥∥
∞

6 Γ ‖(αn
c , α

n
1 , α

n
2 )‖

∞
6 Γcn for all n sufficiently large, for some positive Γ,

which in turn implies that θ+n

cn

n→∞
−−−−→ 0, θ−n

cn

n→∞
−−−−→ 0. Using these relations together

with αn
1 + ||θ+n||1 + ||θ−n||1 = cn + tnα1

, we obtain that α∗

1 > 0. However, from the
limit of complementarity relationships from equation (2.5), which are obtained after

dividing with
∣∣∣
∣∣∣λ̃n

∣∣∣
∣∣∣
∞

→ ∞, we obtain that α∗

1ζ
∗

1 = 0. This is a contradiction with

the initial assumption that ζ∗1 > 0. We must therefore have that ζ∗1 = 0 in addition
to ζ∗2 = 0, which shows that the limit point (x∗, y∗, w∗, z∗) must be feasible.

Proof: C-stationarity. We return to the equation (2.5). We define

η̂
n
y = ηn

y + αn
cwn, η̂

n
w = ηn

w + αn
c yn. (2.9)

Following our definition of an εn stationary point, we have that, ∀ k = 1, 2, . . . , nc,

η̂
n
y,k η̂

n
w,k = ηn

y,kη
n
w,k + (αn

c )2yn
kw

n
k + αn

c

(
ηn

y,ky
n
k + ηn

w,kw
n
k

)
> −2cnεn − 2(εn)2

n→∞
−→ 0.
(2.10)

Define

λ̂
n

=
(
λn, µn, θn, η̂

n
y , η̂

n
w

)
.

The components of λ̂
n

satisfy a set of equations derived from (2.5):

∇xf(xn, yn, wn, zn)T + ∇xh(xn)Tλn+
∇xg(xn)Tµn + ∇xF (xn, yn, wn, zn)T θn = tnx

∇yf(xn, yn, wn, zn)T + η̂
n
y +∇yF (xn, yn, wn, zn)T θn = tny

∇wf(xn, yn, wn, zn)T + η̂
n
w +∇wF (xn, yn, wn, zn)T θn = tnw

∇zf(xn, yn, wn, zn)T + ∇zF (xn, yn, wn, zn)T θn = tnz
h(xn) = tnh, g(xn) 6 tng , g(xn)Tµn = 0, yn 6 0, wn 6 0,

(2.11)
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where
∥∥tng , tnh, tnx , tny , tnw, tnz , tny

∥∥
∞

6 εn. Assume that λ̂
n

admits a subsequence that
diverges to ∞. We can assume without loss of generality that the entire sequence
itself diverges to ∞. Define the sequence

˜̂
λ

n

=
λ̂

n

∣∣∣
∣∣∣λ̂

n
∣∣∣
∣∣∣
∞

,

which, being bounded, must admit a convergent subsequence. We assume, again

without loss of generality, that the sequence
˜̂
λ

n

is itself convergent to

˜̂
λ
∗

=
(
λ̃
∗

, µ̃
∗
, θ̃

∗

, η̃
∗

y, η̃
∗

w

)
,

with

∣∣∣∣
∣∣∣∣
˜̂
λ
∗
∣∣∣∣
∣∣∣∣
∞

= 1. From the construction of λ̂
n

we must have that µ̃∗
> 0, whereas

from (2.10) we must have that

η̃
∗

y,k η̃
∗

w,k > 0, k = 1, 2, . . . , nc. (2.12)

Dividing now all equations involving multipliers of (2.11) by
∣∣∣
∣∣∣λ̂

n
∣∣∣
∣∣∣
∞

and taking the

limit as n→ ∞, we obtain that

∇xh(x
∗)T λ̃

∗

+∇xg(x
∗)T µ̃

∗ +∇xF (x∗, y∗, w∗, z∗)T θ̃
∗

= 0

η̃
∗

y +∇yF (x∗, y∗, w∗, z∗)T θ̃
∗

= 0

η̃
∗

w +∇wF (x∗, y∗, w∗, z∗)T θ̃
∗

= 0

∇zF (x∗, y∗, w∗, z∗)T θ̃
∗

= 0
h(x∗) = 0 g(x∗) 6 0, g(x∗)T µ̃

∗ = 0, y∗ 6 0, w∗ 6 0.

(2.13)

Using the same argument that we applied to (2.6) and that led to the conclusion that
θ∗ = 0 and, subsequently, ζ∗ = 0, we get that (2.13), (2.12), and Assumption (A3)

imply that θ̃
∗

= 0. In turn, this implies that η̃∗y = η̃
∗

w = 0 and, from Assumption

(A2) and using the complementarity relation on the last line of (2.13), that λ̃
∗

= 0,

µ̃
∗ = 0 and thus

˜̂
λ
∗

= 0, which is a contradiction with

∣∣∣∣
∣∣∣∣
˜̂
λ
∗
∣∣∣∣
∣∣∣∣
∞

= 1. This implies that

the sequence λ̂
n

must be bounded. Let

λ̂
∗

=
(
λ∗, µ∗, θ∗, η̂

∗

y, η̂
∗

w

)

be a limit point of this sequence. We assume without loss of generality that it is the
unique limit point. From (2.10) we must have that

η̂
∗

y,k η̂
∗

w,k > 0, k = 1, 2, . . . , nc. (2.14)

From our definition of η̂n
w and η̂

n
y (2.9), it does not immediately follow that the

corresponding limit point satisfy a complementarity relation with w∗ and, respectively,
y∗. Although we have that ηn

w,kw
n
k → 0 and ηn

y,ky
n
k → 0, for k = 1, 2, . . . , nc from

(2.5), the additional terms αcy
n
k and αcw

n
k may potentially prevent a corresponding

complementarity relation from holding for η̂n
w and η̂

n
y , or the respective limits, since

αn
c may diverge to ∞.



Global Convergence of Elastic Mode for MPCC 11

In the following we show that that is not the case. We prove that η̂∗y,ky
∗

k = 0.

Since λ̂n is bounded we must have that

O(1) = η̂n
y,k = ηn

y,k + αn
cw

n
k , O(1) = η̂n

w,k = ηn
w,k + αn

c y
n
k , (2.15)

and that y∗k = 0 ⇒ yn
k

n→∞
−→ 0 ⇒ η̂∗y,ky

∗

k = 0, which would complete the proof.
Assume then that y∗k < 0. Since the limit point is feasible for (OMPV), we must

have that w∗

k = 0, and therefore that wn
k

n→∞
−→ 0. Multiplying the second equation in

(2.15) by wn
k , we obtain that limn→∞ ηn

w,kw
n
k + αn

c y
n
kw

n
k = 0.

Since, from the definition of εn stationary points, we have that
∣∣∣ηn

w,kw
n
k

∣∣∣ ≤ εn,

this implies that αn
c y

n
kw

n
k

n→∞
−→ 0. Using the first equation in (2.15) and the fact that

(xn, yn, wn, zn, ζn
1 , ζ

n
2 ) is a εn stationary point, we obtain that

η̂n
y,ky

n
k = ηn

y,ky
n
k + αn

c y
n
kw

n
k

n→∞
−→ 0.

The last equation proves that η̂∗y,ky
∗

k = 0, k = 1, 2, . . . nc. Similarly, it also follows
that η̂∗w,kw

∗

k = 0, k = 1, 2, . . . nc.

Taking now the limit in (2.11) as n → ∞, and using (2.14), and λ̂n n→∞
−→ λ̂∗,

we obtain that (x∗, y∗, w∗, z∗) is a C-stationary point with with MPCC multiplier

λ̂
∗

= (λ∗, µ∗, θ∗, η̂∗y , η̂
∗

w). The proof is complete. �
Note that, in order to obtain a similar result, MPCC-LICQ was needed in [24].

The preceding result also allows us to characterize all local solutions of (OMPV).
Corollary 2.6. Assume that (OMPV) satisfies assumptions A1, A2, and

A3 everywhere and that (x∗, y∗, w∗, z∗) is a strict local minimum of (OMPV). Then
(x∗, y∗, w∗, z∗) is a C-stationary point of (OMPV).

Proof It is immediate from the definition of (OMPV(c)) that (xc, yc, wc, zc, ζc)
is a local solution of (OMPV(c)) if and only if (xc, yc, wc, zc) is a local solution of

(OMPV 1(c))
min

x,y,w,z
f(x, y, w, z) + cyTw + c ‖F (x, y, w, z)‖

∞

sbj.to g(x) 6 0, h(x) = 0, y, w 6 0.

If x̂ = (x∗, y∗, w∗, z∗) is a strict local minimum of (OMPV), then there exist δ > 0
and a ball B(x̂, δ), whose boundary we denote by Γ, such that for any (x, y, w, z) ∈ Γ,
a feasible point of (OMPV1(c)), we must have that

max{f(x, y, w, z) − f(x∗, y∗, w∗, z∗), yTw + ‖F (x, y, w, z)‖
∞
} > 0.

This implies that there exists ĉ such that, for all γ > ĉ, we have that for any (x, y, w, z),
a feasible point of (OMPV1(c)) on the boundary Γ of B(x̂, δ), we must have that

f(x, y, w, z) − f(x∗, y∗, w∗, z∗) + γ
(
yTw + ‖F (x, y, w, z)‖

∞

)
> 0.

If this is not true, then for any n there exists γn > n such that, for some (xn, yn, wn,
zn) ∈ Γ, a feasible point of (OMPV1(c)), we have that

f(xn, yn, wn, zn) − f(x∗, y∗, w∗, z∗) + γn

(
ynT

wn + ‖F (xn, yn, wn, zn)‖
∞

)
6 0.

(2.16)
Since Γ is compact, the sequence (xn, yn, wn, zn) has an accumulation point (x◦, y◦,
w◦, z◦) ∈ Γ that must be feasible for (OMPV1(c)). Dividing (2.16) by γn and taking
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Choose c0 > 0, n = 0, K > 1, an integer q > 1 and a sequence εn → 0.
MPCC Find an εn solution

(
xcn

, ycn

, wcn

, zcn

, ζcn

1 , ζcn

2

)
of (OMPV(cn)).

If ζcn

1 + ζcn

2 > (εn)
1
q ,

update c : cn+1 = Kcn and n : n = n+ 1.
return to MPCC

Table 2.1

Elastic-mode algorithm

the limit as n → ∞, we get that y◦
T

w◦ = 0 and that F (x◦, y◦, w◦, z◦) = 0, that is
that (x◦, y◦, w◦, z◦) is in effect feasible for (OMPV). But (2.16) also implies that, for
all n,

f(xn, yn, wn, zn) − f(x∗, y∗, w∗, z∗) 6 0.

Taking the limit in the last inequality, we obtain that

f(x◦, y◦, w◦, z◦) − f(x∗, y∗, w∗, z∗) 6 0,

which contradicts our choice of δ.
Therefore, ĉ with the properties specified above must exist. This shows that,

for c > ĉ, (OMPV1(c)) will have a local solution inside of B(x̂, δ). For all n > ĉ

let (xn, yn, wn, zn) be the local solution of (OMPV1(n)) in B(x̂, δ) with the lowest
value. By an argument similar to the one that led to the existence of ĉ, it follows
that (xn, yn, wn, zn) → (x∗, y∗, w∗, z∗). It also follows from the observation at the be-

ginning of the proof that (xn, yn, wn, zn, F (xn, yn, wn, zn), ynT

wn) is a local solution,
and thus a stationary point, of (OMPV(n)). From Theorem 2 it thus follows that
(x∗, y∗, w∗, z∗) is a C-stationary point of (OMPV). The proof is complete. �

We note that the above result could also be proven using [23, Theorem 2], after
one proves that, under assumptions A1, A2 and A3, (OMPV) satisfies MPCC-MFCQ
at any solution. The proof follows once we use the dual form of MPCC-MFCQ in
conjunction with Theorem 2.2. However, the resulting proof is not shorter than the
one we just provided.

2.3. A globally convergent modified elastic mode for the optimization
of parameterized mixed P variational inequalities. We now describe our adap-
tive elastic-mode approach. Although the global convergence result we have presented
in the preceding subsection deals with the situation where cn → ∞, we are interested
in also allowing the penalty parameter to stay bounded, because in that case we can
recover a strongly stationary point [1]. This is a major advantage over regulariza-
tion methods and smoothing methods, which even under the strongest assumptions
recover a solution of the original problem only in the limit of the range of the smooth-
ing/regularization parameter. [13, 24]. An important issue in that case is how should
the penalty parameter cn be chosen. Since MPCC does not have bounded Lagrange
multipliers at a solution, one cannot apply the update that takes into account the
local size of the Lagrange multipliers [3]. Here, we select cn based on a comparison

with (εn)
1
q , where q ≥ 1 is an integer. In fact, when testing for size of ζn

1 , ζ
n
2 , one

may want to compare with the size of the solution of the quadratic subproblem of an
SQP method [1]. The equivalent test in that case would require q = 2, and one can
show that it does not locally interfere with superlinear convergence for a method that
uses exact second-order derivatives when it converges to a strongly stationary point,
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much as in [1]. That argument is tenuous and beyond the scope of this paper. Here
we simply assume that the parameter q is provided by the user, and the test takes
the form in Table 2.1.

Theorem 2.7. Consider the algorithm described in Table 2.1. Assume that the
problem (OMPV) satisfies the assumptions A1, A2 and A3. Assume that, for a
fixed cn, the subproblem (OMPV(cn)) is solved with a nonlinear programming algo-
rithm that satisfies Assumption Alg1. Assume that limn→∞ cnεn = 0. Assume that
the algorithm does not diverge to ∞ and produces

(
xcn

, ycn

, wcn

, zcn

, ζcn

1 , ζcn

2

)
. Then

either

1. the penalty parameter update rule is activated a finite number of times and
then any accumulation point of

(
xcn

, ycn

, wcn

, zcn)
is a strongly stationary

point of (OMPV) or
2. the penalty parameter update rule is activated an infinite number of times, and

then any accumulation point of
(
xcn

, ycn

, wcn

, zcn)
is a C-stationary point of

(OMPV).

Proof Part 1. Since the penalty parameter update rule is activated only a
finite number of times, it follows that there exist a c∗ > 0 and an n0 such that
the penalty parameter satisfies cn = c∗, ∀n > n0. Therefore any accumulation
point (x∗, y∗, w∗, z∗, ζ∗1 , ζ

∗

2 ) of
(
xcn

, ycn

, wcn

, zcn

, ζcn

1 , ζcn

2

)
is a stationary point of

(OMPV(c∗)) that verifies, from the test of the update rule, ζ∗1 = ζ∗2 = 0. It can
be immediately verified that such points are strongly stationary (KKT) points of
(OMPV), much as in [1, 3]. Since such proof is fairly straightforward from the above
references, it is omitted here.

Part 2. If the penalty parameter is updated an infinite number of times, it follows
that cn is increased to ∞, and, by applying Theorem 2, we get that any accumulation
point (x∗, y∗, w∗, z∗) of

(
xcn

, ycn

, wcn

, zcn)
is a C-stationary point of (OMPV). �

3. When MPCC-LICQ Holds Accumulation Points Are M-stationary
Points. The convergence result can be improved when we consider stronger station-
ary conditions. In the rest of this section, we assume that the linear independence
constraint qualification in an MPCC sense (MPCC-LICQ) holds at the solution of the
mathematical program with complementary constraints under consideration.

Definition (MPCC-LICQ). We say that MPCC-LICQ holds at a feasible
(x, y, z, w), point of (OMPV) if the gradients of all active constraints of (OMPV)
at (x, y, z, w), with the exception of the complementary constraint yTw 6 0, are
linearly independent.

To accommodate the fact that a solution of a nonlinear program is never exactly
determined, we will work again with approximate optimality conditions.

Definition (χ active constraints). We say that a constraint g̃(x̃) 6 0 (= 0) of
a nonlinear program is χ active at a point x̃∗ if we have that |g̃(x̃∗)| 6 χ.

Definition (ε, χ second-order stationary point). We say that the point

x̃ = (x, y, z, w, ζ1, ζ2), together with a Lagrange multiplier λ̃ = (λ , µ, θ+n, θ−n, ηy

,ηw ,αc ,α1 ,α2) is an ε, χ second-order point of (OMPV(c)) if

1. x̃ = (x, y, z, w, ζ1, ζ2), is an ε stationary point of (OMPV(c)), that satisfies
exactly the primal-dual complementarity involving the slack variables ηT

y,ky =

0, ηT
w,kw = 0.

2. uT Λc
xx(x̃, λ̃)u > 0 for any u that is at the same time in the null space of the

gradients of the active bound constraints of (OMPV(c)) and null space of a
subset of the χ-active non-bound constraints of (OMPV(c)).
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Here, Λc(x̃, λ̃) is the Lagrangian function of (OMPV(c)). For a general nonlinear
program that satisfies linear independence and strict complementarity at a solution,
the above condition is equivalent to second-order sufficient conditions. In most other
cases, it is weaker than second-order sufficient conditions.

We need two sequences ε, χ to define our approximate second-order sufficient
point. If one uses ε to define the almost active constraints, and if all constraints that
are active at x̃∗ = (x∗, y∗, z∗, w∗, ζ∗1 , ζ

∗

2 ) are infeasible at x̃ = (x, y, z, w, ζ1, ζ2), and if
ε is too small, then no constraint will be ε active, and then the second condition of
our definition becomes too strong.

We denote by A(χ, x̃) the matrix that is formed by the gradients of the active
bound constraints and χ active nonbound constraints of (OMPV(c)). The second
condition of the above definition can be verified in the process, commonly encountered
in active-set methods, of solving a linear system with the following matrix:

[
Λxx(x̃, λ̃) AT (χ, x̃)
A(χ, x̃) 0

]
.

Special versions of the symmetric indefinite factorization will reveal whether this
matrix has the inertia that is compatible with the second-order condition [5].

It thus seems possible to define an active-set approach that, for given ε > 0 and
χ > 0 determines an ε, χ second-order stationary point. Nevertheless, we are not
aware of any software package that is guaranteed to provide such points at this time.
Moreover, our definition is unlikely to work for algorithms such as interior point
approaches. We are currently investigating (1) ways of defining alternate approx-
imate second-order stationary points that can accommodate approaches other than
active-set approaches and (2) whether currently used active-set approaches satisfy our
assumptions.

Theorem 3.1. Assume that the problem (OMPV) satisfies assumptions A1,
A2 and A3 and that every instance of the problem (OMPV(cn)) is solved with an
algorithm that satisfies Assumption Alg1. Assume that x̃n = (xn, yn, zn, wn, ζn

1 , ζ
n
2 ) is

a εn, χn second-order stationary point of (OMPV(cn)), for all n = 1, 2, . . . ,∞ and for
sequences {cn} , {εn} , {χn} that satisfy lim

n→∞

cn = ∞, lim
n→∞

εn = 0, lim
n→∞

χn = 0 and

lim
n→∞

cnεn = 0. Let (x∗, y∗, z∗, w∗, ζ∗1 , ζ
∗

2 ) be an accumulation point of this sequence.

If (x∗, y∗, z∗, w∗) satisfies MPCC-LICQ, then (x∗, y∗, z∗, w∗) must be an M-stationary
point of (OMPV).

Proof. The argument from [23, Theorem 3.3], that was used to prove the similar
result for the case where εn = 0, χn = 0, applies here. We outline the main elements
and the way the argument continues to apply for approximate stationary points.

The limit point of the sequence x̃n = (xn, yn, zn, wn, ζn
1 , ζ

n
2 ) is (x∗, y∗, z∗, w∗, ζ∗1 ,

ζ∗2 ). Using Theorem 2.5, we obtain that 0 = ζ∗1 = ζ∗2 and that (x∗, y∗, w∗, z∗), with
the associated MPCC multiplier, is a C-stationary point. Note that since MPCC-
LICQ holds, the MPCC multiplier must be unique. Assume now that the limit point
(x∗, y∗, z∗, w∗, 0, 0) is not an M-stationary point. This means that for the unique
MPCC multiplier

(
λ∗, µ∗, θ∗, η̂∗y , η̂

∗

w

)
there exists an index kC , kC ∈ {1, 2, . . . , nc}

such that η̂∗
w,kC < 0 and η̂y,kC < 0.

If we follow the logic we went through to obtain equation (2.10) starting from
equation (2.5), as well as the definition of an ε stationary point, this means that for any

n, there exists multiplier λ̃
n

=
(
λn, µn, θ+n, θ−n, ηn

y , η
n
w, α

n
c , α

n
1 , α

n
2

)
of (OMPV(cn)),

such that yn
kC < 0, wn

kC < 0, ηn
y,kC = 0, ηn

w,kC = 0, ζn
2 > 0, αn

2 = 0. Therefore,
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the bound constraints ykC 6 0, wkC 6 0 must be inactive at the current n, and we
must also have that αn

c = cn + tnα2 = cn +O(εn). Moreover, any nonbound constraint
of (OMPV(cn)) that is χn active must be a relaxed active constraint of (OMPV)
at (x∗, y∗, z∗, w∗). In addition, following again the proof of Theorem 2.5, that we
followed to obtain equation (2.10) starting from equation (2.5), we obtain that the
MPCC multipliers corresponding to the index kC must satisfy η̂∗

y,kC = lim
n→∞

αn
cw

n
kc <

0, η̂∗
w,kC = lim

n→∞

αn
c y

n
kc < 0. In particular, this means that the sequence

wn
kc

yn
kc

is lower

bounded away from 0.
Choose now a vector dn = (dn

x , d
n
y , d

n
w, d

n
z ) that satisfies the following constraints:

∇xgi(x
n)dn

x = 0 i : gi(x
∗) = 0

∇xh(x
n)dn

x = 0

∇(x,y,w,z)F (xn, yn, wn, zn)
(
dn

x , d
n
y , d

n
w, d

n
z

)T
= 0

dn
y,k = 0 k : y∗k = 0, k 6= kC

dn
w,k = 0 k : w∗

k = 0, k 6= kC

dn
y,kC = 1

dn
w,kC = −

wn

kC

yn

kC

.

Since the limit point (x∗, y∗, z∗, w∗) satisfies MPCC-LICQ, such a vector dn = (dn
x , d

n
y ,

dn
w, d

n
z ) must exist for n sufficiently large. In addition, from (a) our observation that,

any non bound constraint of (OMPV(cn)), that is χn active must be a relaxed active
constraint of (OMPV) at (x∗, y∗, z∗, w∗) and (b) since the constraints ykC 6 0, wkC 6

0 are inactive at x̃n = (xn, yn, zn, wn, ζn
1 , ζ

n
2 ), it follows that d̃n = (dn

x , d
n
y , d

n
w, d

n
z , 0, 0)

is in the null space of the gradients of the active bound constraints and χn active
non-bound constraints. Consider the Lagrangian of (OMPV(c))

Λc(x̃, λ̃) = f(x, y, z, w) + g(x)Tλ+ h(x)Tµ+ F (x, y, w, z)T (θ+ − θ−) + yT ηy

wT ηw + αcy
Tw + (c− eT

nc+lθ
+ − eT

nc+lθ
− − α1)ζ1 + (c− αc − α2)ζ2.

Following the assumption that x̃n = (xn, yn, zn, wn, ζn
1 , ζ

n
2 ), together with the mul-

tiplier λ̃
n

=
(
λn, µn, θ+n, θ−n, ηn

y , η
n
w, α

n
c , α

n
1 , α

n
2

)
, is a εn, χn second-order stationary

point, we must have that d̃n,T∇x̃x̃Λcn

(x̃n, λ̃n)d̃n > 0.
Following the expression of the Lagrangian of (OMPV(c)) and the definition of

dn, and since λn, µn, θ+,n, θ−,n are bounded, we obtain that

d̃n,T∇x̃x̃Λcn

(x̃n, λ̃n)d̃n = −αn
c

wn
kc

yn
kc

+O(1).

However, as we argued in the beginning of this proof, the fraction in the equation
before is lower bounded away from 0, whereas we have that αn

c → ∞, which means
that lim sup d̃n,T∇x̃x̃Λcn

(x̃n, λ̃n)d̃n < 0.
This contradicts the assumption that x̃n is an εn, χn second-order stationary

point, which in turn contradicts our assumption that (x∗, y∗, z∗, w∗) is not an M-
stationary point. Therefore, (x∗, y∗, z∗, w∗) is an M-stationary point, and the proof
is complete. �

An important question is whether the result can be improved to show convergence
to a strongly stationary point when MPCC-LICQ holds. A situation where the M-
stationarity result can be enhanced when ULSC holds at the convergence point. The
following theorem goes back to a result from [13] for a smoothing method, and has
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also been stated in [24] for the regularization method, when each subproblem is solved
exactly (though, in practice, this may take an infinite number of steps). We formally
state this result in the following paragraph.

Theorem 3.2. If, in addition to the assumptions of Theorem 3.1, we have
that ULSC holds at the accumulation point (x∗, y∗, z∗, w∗), then (x∗, y∗, z∗, w∗) is
a strongly stationary point and, as a result, a B-stationary point.

Proof Since MPCC-LICQ holds at the solution, there exists a unique MPCC
multiplier that satisfies the M-stationarity conditions. From the uniqueness property,
the same multiplier must also ULSC, which, together with the M-stationarity condi-
tions, implies that (x∗, y∗, z∗, w∗) is a strongly stationary point of (OMPV). Following
[23, Theorem 4], we get that the point must also be a B-stationary point. �

3.1. M-Stationary Points in Finite Arithmetic. In this subsection we dis-
cuss whether M-stationary points and strongly stationary points can be distinguished
in finite arithmetic.

The following result is in the vein of backward error analysis, and it shows that
in any neighborhood of an M-stationary point there is a strongly stationary point of
a perturbed problem. The result is stated for (OMPV) though it can be immediately
extended to the entire MPCC class. Note that we do use no other property of (OMPV)
except the twice continuous differentiability of the data.

Theorem 3.3. Assume that (x∗, y∗, z∗, w∗) is an M-stationary point of (OMPV).
Then, for any δ > 0, the following exist

1. A perturbation f δ(x, y, w, z)of the objective function f(x, y, w, z)that satisfies∥∥∇x̃f
δ(x, y, w, z) −∇x̃f(x, y, z, w)

∥∥ 6 δ for all x̃ = (x, y, z, w) in a neighbor-
hood of (x∗, y∗, z∗, w∗).

2. A vector lδF that satisfies
∥∥lδF

∥∥ 6 δ.

3. A point (xδ, yδ, zδ, wδ) that satisfies
∥∥(xδ, yδ, zδ, wδ) − (x∗, y∗, z∗, w∗)

∥∥ 6 δ

and that is a strongly stationary point for the perturbed problem

(δOMPV )

min
x,y,w,z

fδ(x, y, w, z)

sbj.to g(x) 6 0
h(x) = 0
F (x, y, w, z) = lδF
y, w 6 0
(yTw = 0) yTw 6 0

.

Note A pure backward error result would require that the M-stationary point at
hand is the strongly stationary point of a nearby problem, which is generally not true
because of the structure of the problem.

Proof By the definition of an M-stationary point it follows that there exists an
MPCC multiplier (λ, µ > 0, θ, η̂y, η̂w) at x̃ = (x∗, y∗, w∗, z∗) that satisfies

∇xf(x∗, y∗, w∗, z∗)T + ∇xh(x
∗)Tλ+

∇xg(x
∗)Tµ+ ∇xF (x∗, y∗, w∗, z∗)T θ = 0

∇yf(x∗, y∗, w∗, z∗)T + η̂y + ∇yF (x∗, y∗, w∗, z∗)T θ = 0
∇wf(x∗, y∗, w∗, z∗)T + η̂w + ∇wF (x∗, y∗, w∗, z∗)T θ = 0
∇zf(x∗, y∗, w∗, z∗)T + ∇zF (x∗, y∗, w∗, z∗)T θ = 0
g(x∗) 6 0, h(x∗) = 0, F (x, y, z, w) = 0,
µ > 0, y 6 0, w 6 0, yTw = 0,

yTw = 0, g(x)Tµ = 0,
∑nc

k=1 yk |η̂y,k| = 0,
∑nc

k=1 wk |η̂w,k| = 0,
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in addition to the sign condition on the multipliers η̂y, η̂w associated with the variables
involved in the complementarity constraints. These conditions are the following:

∀k = 1, 2, . . . , nC , η̂y,kη̂w,k > 0 and

{
η̂w,k < 0 ⇒ η̂y,k = 0,
η̂y,k < 0 ⇒ η̂w,k = 0,

To simplify the notation, we assume, without loss of generality that the negative
multipliers appear only in the y variables. In turn, this assumption implies that there
is a partition K̃ ∪ K̃c = 1, 2, . . . , nC , that satisfies the following:

k ∈ K̃ ⇒ η̂y,k < 0, η̂w,k = 0;

k ∈ K̃c ⇒ η̂y,k > 0, η̂w,k > 0.

We now construct the following family of points,

x̃(t) = (x(t), y(t), w(t), z(t))
x(t) = x∗, y(t) = y∗, z(t) = z∗;

wk(t) = w∗

k, k ∈ K̃c;

wk(t) = w∗

k − t, k ∈ K̃.

We have that the point x̃(t) satisfies

∇xf(x∗, y∗, w(t), z∗) + ∇xh(x
∗)λ+

∇xg(x
∗)Tµ+ ∇xF (x∗, y∗, w(t), z∗)T θ = lx(t)

∇yf(x∗, y∗, w(t), z∗)T + η̂y + ∇yF (x∗, y∗, w(t), z∗)T θ = ly(t)
∇wf(x∗, y∗, w(t), z∗)T + η̂w + ∇wF (x∗, y∗, w(t), z∗)T θ = lw(t)

∇zf(x∗, y∗, w(t), z∗)T + ∇zF (x∗, y∗, w(t), z∗)T θ = lz(t)
g(x∗) 6 0, h(x∗) = 0, F (x∗, y∗, w(t), z∗) = lF (t),
µ > 0, y∗ 6 0, w(t) 6 0, y∗,Tw(t) = 0,

g(x∗)Tµ = 0,
∑nc

k=1 y
∗

k |η̂y,k| = 0,
∑nc

k=1 w
∗

k(t) |η̂w,k| = 0.

Since, from Assumption A1, the data of (OMPV) is twice continuously differentiable,
we have that there exists cl > 0 that depends only on the point (x∗, y∗, w∗, z∗) such
that the residuals satisfy ‖lx(t), ly(t), lw(t), lz(t), lF (t)‖ 6 clt for all t sufficiently small.

There exists a tδ such that, for all, t 6 t
δ

we have at the same time that

‖(x(t), y(t), z(t), w(t)) − (x∗, y∗, z∗, w∗)‖ 6 δ and ‖lx(t), ly(t), lw(t), lz(t), lF (t)‖ 6 δ.

After defining lδF = lF (tδ), f δ(x, y, w, z) = f(x, y, w, z) + xT lx(tδ) + yT ly(tδ) +
wT lw(tδ) + zT lz(t

δ) and (xδ, yδ, zδ, wδ) = (x(tδ), y(tδ), z(tδ), w(tδ)), the conclusion
of the theorem follows. �

If the point towards which we are converging is an M-stationary point that satisfies
MPCC-LICQ and that is not a strongly stationary point, then a descent direction can
be found [14]. In that sense, the Theorem 3.1 is still weaker than the ideal result,
which is that if MPCC-LICQ holds at the point towards which we are converging,
then that point is a strongly stationary point and a B-stationary point [14, 23].

However, the preceding theorem shows that in finite arithmetic, one may not be
able use only the signs of the multipliers to predict whether we are converging to a
strongly stationary point (xδ, yδ, wδ, zδ) or to a proper M-stationary point (x∗, y∗,
w∗,z∗) where descent is still possible. This point will be demonstrated later with a
numerical example. To guarantee that one can escape a proper M-stationary point,
at least when MPCC-LICQ holds, then one has to combine a nonlinear programming
algorithm with an active-set method of the type studied in [14]. How to robustly
switch between the two is the subject of future research.
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4. Conditions for Global Convergence. To obtain a global convergence re-
sult, we need to insure that the iterates do not drift away to ∞. To achieve such a
result, we make two more assumptions about the problem and one about the algorithm
that is used to solve the relaxed problem (OMPV(c)).

A4 The penalty function ψ(x, y, w, z) = ||F (x, y, w, z)||
∞

+yTw has bounded level
sets over the set defined by the constraints g(x) ≤ 0, h(x) = 0, y ≤ 0, w ≤ 0.

A5 The objective function f(x, y, w, z) is bounded below over the same set.
Alg2 For any fixed value of c, the algorithm that is applied for solving the problem

(OMPV(c)) decreases the merit function f(x, y, z, w) + cψ(x, y, z, w).

Assumption Alg2 is quite natural in connection with the subproblem (OMPV(c)). If
the constraints g(x) and h(x) are linear and if the algorithm applied is a sequential
quadratic programming algorithm that uses a positive definite matrix in the quadratic
program (from a BFGS type approximation for example), then one can show that
for a fixed c the sequential quadratic programming algorithm produces a sequence
of decreasing values of f(x, y, z, w) + cψ(x, y, w, z), much as in the case of the L∞

penalty function [3]. Assumption A5 is standard in most global convergence results
[8]. Assumption A4, however, seems to be quite restrictive for general nonlinear
programming, unless the feasible set is compact. Nevertheless, we will show that
for the obstacle problem to be presented in Section 5, the assumption does hold. A
similar condition has been used to enforce boundedness of the iterates in [18], for a
different merit function, that did not enjoy the exactness property and could not lead
to the outcome of part 1 of Theorem 2.7.

Theorem 4.1. Assume that (OMPV) satisfies assumptions A1–A5 and that the
algorithm that is used to solve the subproblems satisfies assumptions Alg1 and Alg2.
Then the solution sequence produced by the algorithm in Table 2.1 is bounded, and
any accumulation point is a C-stationary point.

Proof LetBf denote the lower bound of the objective function f(x, y, w, z), which
exists from Assumption A5. It then follows that the merit function Ψ(x, y, w, z, c) =
1
c
(f(x, y, w, z) −Bf ) + ψ(x, y, w, z) is decreased at any step of the algorithm in Ta-

ble 2.1. When c is fixed, the decrease follows from Assumption Alg2. When c

is decreased, Ψ(x, y, w, z, c) must decrease since at that point f(x, y, w, z) − Bf > 0.
Therefore, all the iterates (xn, yn, wn, zn) will satisfy ψ(xn, yn, wn, zn) < Ψ(xn,yn,wn,
zn,cn) ≤ Ψ(x0, y0, w0, z0, c0). The conclusion follows from Assumption A4 and from
Theorem 2.5. �

We emphasize that the value of the lower bound Bf does not need to be known
for the decrease in the (unknown) merit function Ψ(x, y, w, z) to occur.

We note that global convergence results for methods that use a penalty term are
generally restricted to the case where the global solution of the subproblem is obtained
[8, Theorem 12.1.1]. In our case, local solutions of the relaxed/penalized subproblems
under the assumptions described here are sufficient.

5. The Obstacle Problem. As examples of problems that satisfy these con-
clusions we present several instances of the obstacle problem from [22]. This problem
concerns the optimization of an elastic membrane that can be in contact with a rigid
or elastic obstacle. The design parameters quantify the shape of suport of the mem-
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brane. The problem is the following:

(OBST)

min
x,y,w,z

f(x, z)

sbj.to g(x) 6 0
−A(x)z + φ(x) = y

k(φ(x) −A(x)z) + χ(x) − z = w

y,w 6 0
(yTw = 0) yTw 6 0

Here all functions are differentiable with respect to their parameter. In addition, for
any x we have that the matrix A(x) is positive definite. The parameter k satisfies
k > 0, and if k = 0, then the obstacle is rigid. The case k > 0 models the situation
when the obstacle is flexible. The inequality constraints g(x) 6 0 are box constraints
on the design parameters x.

Lemma 5.1. The problem (OBST) satisfies assumptions A1,A2,A3.
Proof Assumption A1 is satisfied immediately from the differentiability proper-

ties of all functions involved in the definition of the obstacle problem. The parameters
x satisfy box constraints, and therefore the functions g(x) are linear and always satisfy
Assumption A2.

To verify Assumption A3 for (OBST) in the (OMPV) framework, we have

F (x, y, z, w) =

(
y +A(x)z − φ(x)
w − k(φ(x) −A(x)z) − χ(x) + z

)

∇(y,z,w)F (x, y, w, z) =

(
I 0 A(x)
0 I I + kA(x)

)
.

We prove that the partition of ∇(y,z,w)F (x, y, w, z) in blocks corresponding to the
variables y, z, w is a mixed P partition and thus Assumption A3 is satisfied. Take a
vector (ȳ, w̄, z̄)

T
that satisfies ∇(y,z,w)F (x, y, w, z) (ȳ, w̄, z̄)

T
= 0, that is

ȳ +A(x)z̄ = 0, w̄ + (I + kA(x))z̄ = 0,

as well as ȳkw̄k 6 0, k = 1, 2, . . . , nc. In turn, this implies that ȳT w̄ 6 0. Solving
for ȳ, w̄ from the displayed equations, this implies that z̄TA(x)T (I + kA(x))z̄ 6 0
which, in turn, implies that z̄TA(x)T z̄+ kz̄TA(x)TA(x)z̄ 6 0. Since the matrix A(x)
is positive definite and k > 0, we obtain that z̄ = 0, and subsequently ȳ = 0 and
w̄ = 0. This proves that Assumption A3 holds for (OBST) and completes the proof
of the theorem. �

Concerning the level sets of ψ(x), we have the following lemma.
Lemma 5.2. For any β > 0, we have that the set

Lβ = {(x, y, w, z) ∈ R
n+2nc+l|y ≤ 0, w ≤ 0, g(x) ≤ 0, ψ(x, y, w, z) < β}

is bounded. Therefore, problem (OBST) satisfies Assumption A4.
Proof We start assume the conclusion is false. This means that there is a β > 0

for which the level set Lβ is unbounded.
We first note that we have box constraints on the variables x, which means that

they can never get unbounded. Therefore, only the (y, w, z) part can get unbounded.
Thus, there exists a sequence x̃n = (xn, yn, wn, zn) such that Γn = ||(yn, wn, zn)|| →
∞ and ψ(xn, yn, wn, zn) < β. In turn, the last statement implies that we have

||F (xn, yn, wn, zn)||
∞

≤ β, ynT

wn ≤ β. (5.1)
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Since the sequence

x̂n =

(
xn,

yn

Γn
,
wn

Γn
,
zn

Γn

)

is bounded, it admits a convergent subsequence. To simplify notation, we assume that
the whole sequence x̂n is convergent to a point (x, y, w, z), that satisfies ||(y, w, z)|| =

1. We divide the first equation in (5.1) by Γn, and the second equation by (Γn)
2
, and

we take the limit in both as n → ∞. Since F (x, y, w, z) is linear in y, w, z, and since
the mappings χ(·) and φ(·) are continuous we obtain that the limit point (x, y, w, z)
satisfies the following relations:

y +A(x)z = 0, w + kA(x)z + z = 0, wT y = 0. (5.2)

Solving for y and w from the first two equations, and replacing the results in the third
equation, we obtained that zTA(x)T (kA(x) + I)z = 0. In turn, the fact that A(x) is
a positive definite matrix implies that z = 0. Subsequently, from (5.2) we obtain that
w = y = 0. This contradicts ||(y, w, z)|| = 1 and proves the claim. �.

We are now ready to state our main result for the obstacle problem.
Theorem 5.3. Assume that f(x, z), the objective function of (OBST) is bounded

below on the set g(x) ≤ 0, y ≤ 0, w ≤ 0. If the algorithm from Table 2.1 is applied
to (OBST) and the (OMPV(c)) subproblems are solved with an algorithm that satis-
fies Assumptions Alg1 and Alg2, then the sequence of iterates is bounded and any
accumulation point is a C-stationary point.

Proof The result follows from Lemmas 5.1 and 5.2 and Theorem 4.1. �

6. Numerical Results. In this section we apply an algorithm like the one in
Table 2.1 to three instances of the obstacle problem. All problems have an objective
function that is nonnegative over the set defined by the parameter constraints and
the bound constraints on the variables y, w. Therefore Theorem 5.3 applies and, if
the algorithm we use satisfies Alg1 and Alg2, then any accumulation point of the
algorithm is a C-stationary point (and even a strongly stationary point if the penalty
parameter stays bounded, from Theorem 2.7).

In their original form, the problems are like (OMPV) except that the constraints
y, w ≤ 0 are replaced by y, w ≥ 0 [22]. One can immediately be see that all of the
results in the preceding sections apply if we change the signs of the variables y, w,
and correspondingly switching the signs of the multipliers ηw,ηy,η̂y, and η̂w. In all
problems, we deal with an elastic membrane that is hanging on top of an obstacle.
The membrane is attached to a support whose shape can change as a part of the
optimization process.

• The incidence set identification problem [22, Section 9.4]. In this prob-
lem, the shape of the support must be changed in such fashion that the shape
of the contact region is as close as possible to a prescribed shape. The objec-
tive function here is the discrepancy between some measure of the difference
between the contact region for current design and the sought after contact
region. Therefore in this problem the final objective function should be as
close as possible to zero. These are the is problems, which in reference [9]
are called the incid-set problems.

• The packaging problem with compliant obstacle [22, Section 9.3]. In
this problem we try to find the shape of the support that will minimized
the area of the membrane, while keeping the membrane in contact with the
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obstacle over at least a prescribed region. The obstacle here is compliant (it
can deform under pressure from the membrane). The objective function is
the area of the membrane. These are the pc problems, which in reference [9]
are the pack-comp problems.

• The packaging problem with rigid obstacle [22, Section 9.2]. This is the
same as the preceding problem except that now the obstacle is constrained to
be rigid. These are the pg problems, which in reference [9] are the pack-rig

problems. The shape of the optimal membrane for the problem pg-2-32 is
displayed in Figure 6.1 both in a transparent fashion on top of the parabolic
obstacle and by itself with the final mesh projected on the bottom plane.

The additional constraints of the problems that would not fit the assumptions
A3 are treated by means of a penalty function. We emphasize that this was not
a choice we made in order to have the problems fit our framework. The use of a
penalty function was the modeling choice from [22], and it was necessary there for
the computation of the generalized gradient. Therefore, the problems solved have the
same formulation as [22].

For each problem we have six variants. We consider three different grid sizes, all
related to a finite element discretization: 8×8, 16×16, and 32×32. The names of the
associated problems contain 8, 16, or 32 in their name. We also consider two types of
obstacle. The first obstacle is a linear obstacle [22, Example 9.1]. The corresponding
problems have in their name the digit 1. The second obstacle is a parabolic obstacle
[22, Example 9.2]. The corresponding problems have in their name the digit 2.

The problems have been modeled using the AMPL modeling language [12], start-
ing from the AMPL model files from the MacMPEC Library of Sven Leyffer [17, 9].
We have implemented the algorithm in Table 2.1 as an AMPL script. We chose the
following parameters: q = 2, K = 10, c0 = 10, and εn = 10−312−n. Note that
cn 6 10n+1, which means that cnεn → 0, as required by our results. In addition, we
stop the algorithm in Table 2.1 when ζn

1 + ζn
2 ≤ 1e− 7.

To solve the nonlinear programming problem for fixed penalty parameter c that
corresponds to the section following the label OMPV in Table 2.1, we have used the
interior-point solver knitro [21]. To produce an εn stationary point as required in
Table 2.1, we have set parameters opttol=feastol=εn. We have set the maximum
number of iterations of knitro to 4000.

Does knitro satisfy our assumptions? Since knitro is an interior point
algorithm, it satisfies the bound constraints in the definition of ε stationary point
exactly. We note that knitro satisfies a weaker version of the property Alg1, where
MFCQ is replaced by LICQ [21]. Note, however, that Assumption Alg1 is merely
a way to ensure that and approximate KKT point of (OMPV(c)) can be found. In
all our experiments, knitro always returned an ε stationary point with a prescribed
ε > 0. We cannot a priori guarantee that Assumption Alg2 holds for knitro for any
problem, because the algorithm uses a completely different technique to approach the
optimal point from that used by sequential quadratic programming algorithms with
an exact penalty function, for which Alg2 can be shown to hold [3]. Nevertheless,
Alg2 did hold for the examples we have tried (at least with respect to the first and
last iterate for a fixed penalty parameter c). As a result, Theorem 5.3 applies to give
global convergence to C-stationary points.

The problem of verifying the assumptions of Theorem 3.1, by either an a priori
guarantee or an a posteriori test, is more difficult. We need to guarantee that the
outcome of a given algorithm satisfies the approximate second-order conditions. Our
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Fig. 6.1. Solution of the obstacle problem with a rigid parabolic obstacle on a 32 × 32 mesh.

definition of second order stationary points is oriented towards active-set methods, and
cannot be guaranteed for knitro. Unfortunately, it also involves the use of derivatives
that are not interactively provided in AMPL, and we could not test for it, or a variant
of it that may have been appropriate for interior point methods. In addition, in order
to guarantee is that the assumptions of Theorem 3.1 holds, we anyway need to verify
that MPCC-LICQ holds, which is also difficult to do while using AMPL. Therefore the
only test that we did on the outcome, with respect to convergence to M-stationary
points, was to see whether the solution point and multipliers at hand satisfy the
M-stationarity condition.

We did not choose an active-set software that was available to us, though it
would seem appropriate from the discussion following the definition of ε, χ second-
order stationary points, to solve the subproblem (OMPV(c)) for the following reasons.
(1) Our attempt to solve the subproblems (OMPV(c)) by either lancelot or minos

were unsuccessful on problems for grids of size 16 and above (at least in a reasonable
amount of time). (2) For the package SNOPT it has already been demonstrated that
its elastic mode approach works on problems like the one described here [9]. Using
our elastic mode approach in a loop where the SNOPT elastic mode approach could be
triggered when solving the inner problem (OMPV(c)) seemed pointless.

We study whether we are approaching either a C-stationary point or an M-
stationary point. Following the proof of Theorem 2.5, once we have obtained the
Lagrange multipliers ηw, ηy of the constraints y, w ≤ 0 in (OMPV(c)), we can con-
struct the following approximation to the MPCC multipliers η̂w, η̂y:

η̂w,k = ηw,k + cyk, η̂y,k = ηy,k + cwk, k = 1, 2, . . . , nC .

We now define the following parameters:

Cstat = min
k=1,2,...,nC

η̂w,kη̂y,k, Mstat = max
k=1,2,...,nC

min{η̂w,k, η̂y,k}.

To preserve the clarity of the presentation, we ignore as this point the superscript n.
Following the proof of the Theorem 2.5, we get that, if c→ ∞ and lim inf Cstat ≥ 0,
then any accumulation point of the algorithm in Table 2.1 is a C-stationary point.
In addition, when (OMPV) is formulated with the constraints y, w ≥ 0 (as we have
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Problem Obj Uc Ut Cstat Mstat Feval KFeval
is-1-8 2.352e-08 0 5 4.10e-11 2.89e-09 204 390
is-1-16 8.639e-06 1 6 9.38e-08 7.85e-06 451 4001
is-1-32 5.904e-06 2 7 3.36e-08 5.52e-05 2906 1097
is-2-8 4.517e-03 1 6 5.12e-08 2.84e-07 302 1712
is-2-16 3.006e-03 1 6 1.27e-06 1.02e-03 434 4001
is-2-32 1.774e-03 2 5 1.01e-05 3.54e-03 2083 4001
pc-1-8 6.000e-01 1 5 6.32e-14 1.40e-03 75 4001
pc-1-16 6.169e-01 1 7 3.82e-21 5.65e-07 297 4001
pc-1-32 6.529e-01 2 6 9.60e-18 8.93e-05 4999 3081
pc-2-8 6.731e-01 1 5 1.01e-19 3.03e-06 78 1421
pc-2-16 7.271e-01 2 5 3.60e-16 1.77e-03 289 1358
pc-2-32 7.826e-01 2 6 1.84e-16 1.22e-04 645 1350
pr-1-8 7.879e-01 1 6 9.28e-18 1.03e-06 193 81
pr-1-16 8.260e-01 2 5 1.68e-16 1.14e-05 218 54
pr-1-32 8.508e-01 2 5 1.95e-17 1.17e-03 644 3040
pr-2-8 7.804e-01 1 6 3.20e-18 1.46e-06 183 33
pr-2-16 1.085e+00 3 6 2.32e-15 1.73e-05 342 208
pr-2-32 1.135e+00 3 6 1.36e-14 1.59e-04 661 2792

Table 6.1

Numerical results

done in our AMPL files) and when lim sup Mstat ≤ 0, then the limiting point is an
M-stationary point.

The numerical results are organized in Table 6.1. We have displayed the name of
the problem (Problem), the final values of the objective function (Obj), the number
of penalty updates (Uc), the number of tolerance updates (Ut), the C-stationarity
indicator (Cstat), the M-stationarity indicator (Mstat), the number of function eval-
uations (Feval) needed by our implementation of the algorithm in Table 2.1 and the
number of function evaluations (KFeval) needed by knitro in order to solve (OMPV)
directly. The final tolerance parameter is ε = 10−312−Ut and the final penalty pa-
rameter is c = 10−Uc−1.

From Table 6.1 it cannot be claimed that one solver is constantly better than
the other (in terms of the number of function evaluations), though the elastic mode
approach solves 2/3 of the problems faster than knitro. We see that knitro applied
directly to the chosen instances of the obstacle problem stops with a maximum number
of iterations reached in five instances, which is a sign of lack of convergence. Note
that we went substantially beyond the 1,000 maximum iterations that represent the
default settings of knitro. However, our elastic mode approach leads to resolution
of all the instances of these problems, as predicted by Theorem 4.1, although it also
uses knitro in the inner loop! This conclusion is in line with previous work that
has shown that the elastic mode results in a substantially more robust behavior of
nonlinear programming solvers when applied to MPCC [1, 9].

In verifying the conclusion of Theorems 2.7 and 3.1 for the numerical outcome at
hand, we have to decide whether we are in the situation where c→ ∞. In absence of
any additional information, such as whether the point toward which we are converg-
ing satisfies MPCC-LICQ and whether strict complementarity holds, which cannot
be extracted from those solvers in a simple and robust manner, a robust test for this
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condition is a difficult to design. On the one hand, we can consider the values of the
penalty parameter derived from the value of Uc in Table 6.1, c = 10−Uc−1, to be suffi-
ciently small as to indicate that we have converged in all cases to strongly stationary
points. This conclusion would be in line with the fact that, in a statistical sense, this
is the expected outcome [23], as well as with preceding numerical investigations [9].
This outcome would confirm the first case of Theorem 2.7. We note that the values
of the objective function are consistent with previous numerical experiments [9].

On the other hand, we see that Cstat > 0 and Mstat, though positive, is very small
towards convergence. This is consistent with approaching an M-stationary point,
which is an outcome allowed by Theorem 2.7, as well as Theorem 3.1. Either way,
the result of Theorem 2.7 is verified.

On the issue of distinguishing between M-stationary points and strongly station-
ary points in finite arithmetic, we have observed what was predicted by Theorem
3.3. For example, for problem pr-1-16, that was formulated with y ≥ 0 and w ≥ 0,
the numerical results for index k = 19 were y19 = 1.039e − 05, w19 = 1.42e − 04,
η̂y,19 = 0.14, η̂w,19 = 1.03e − 02. In absence of any additional information (such as
whether MPCC-LICQ holds, which cannot be tested for in AMPL), it is difficult to
decide whether the algorithm converges to an M-stationary point at which descent
is still possible, or whether it converges to a strongly stationary point. The same
situation, in general lines, was noticed for all problems.

7. Conclusions. We have shown that any accumulation point of the elastic
mode approach that solves subproblems inexactly, but with increasing accuracy, is a
C-stationary point of an optimization problem of parameterized mixed P variational
inequalities (Theorem 2.5). If, in addition, the accumulation point satisfies MPCC-
LICQ and the solver used provides a point that approximately satisfies the second-
order conditions, then the resulting point is M-stationary (Theorem 3.1). We have
also shown that any M-stationary point of such problems is in the neighborhood of a
strongly stationary point of a perturbed problem, for arbitrarily small perturbations
(Theorem 3.3). In practical terms, this means that strongly stationary points and
M-stationary points are difficult to distinguish in finite arithmetic.

In the process of guaranteeing that the iterates do not drift to infinity, we con-
struct a merit function with bounded level sets that is decreased at every step, even
when the penalty parameter is updated (Theorem 4.1). In turn, this ensures the
boundedness of the iterates of the algorithm. We have shown that optimization prob-
lems built around the obstacle problem [22, Section 9] satisfy the problem assumptions
A1–A5 that we have used in proving our convergence results (Theorem 5.3). We have
implemented our algorithm and applied it to 18 instances of the obstacle problem from
the MacMpec [17] library. The numerical results demonstrate our theoretical findings
as well as the significant increase in robustness if the elastic mode is used with a
nonlinear programming solver.
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